
COIN Attacks: On Insecurity of Enclave Untrusted
Interfaces in SGX

Mustakimur Rahman Khandaker
mrk15e@my.fsu.edu

Florida State University

Yueqiang Cheng�
chengyueqiang@baidu.com

Baidu Security

Zhi Wang
zwang@cs.fsu.edu

Florida State University

Tao Wei
lenx@baidu.com
Baidu Security

Abstract
Intel SGX is a hardware-based trusted execution environ-
ment (TEE), which enables an application to compute on
confidential data in a secure enclave. SGX assumes a pow-
erful threat model, in which only the CPU itself is trusted;
anything else is untrusted, including the memory, firmware,
system software, etc. An enclave interacts with its host ap-
plication through an exposed, enclave-specific, (usually) bi-
directional interface. This interface is the main attack surface
of the enclave. The attacker can invoke the interface in any
order and inputs. It is thus imperative to secure it through
careful design and defensive programming.

In this work, we systematically analyze the attack models
against the enclave untrusted interfaces and summarized
them into the COIN attacks – Concurrent, Order, Inputs, and
Nested. Together, these four models allow the attacker to in-
voke the enclave interface in any order with arbitrary inputs,
including from multiple threads. We then build an extensi-
ble framework to test an enclave in the presence of COIN
attacks with instruction emulation and concolic execution.
We evaluated ten popular open-source SGX projects using
eight vulnerability detection policies that cover information
leaks, control-flow hijackings, and memory vulnerabilities.
We found 52 vulnerabilities. In one case, we discovered an
information leak that could reliably dump the entire enclave
memory by manipulating the inputs. Our evaluation high-
lights the necessity of extensively testing an enclave before
its deployment.
CCS Concepts. • Security and privacy → Trust frame-
works; Vulnerability scanners.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378486

Keywords. Intel SGX; enclave; vulnerability detection
ACM Reference Format:
Mustakimur Rahman Khandaker, Yueqiang Cheng�, Zhi Wang,
and Tao Wei. 2020. COIN Attacks: On Insecurity of Enclave Un-
trusted Interfaces in SGX. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20), March 16–20, 2020,
Lausanne, Switzerland. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3373376.3378486

1 Introduction
Intel Software Guard Extensions (SGX) introduces a set of
ISA extensions to enable a trusted execution environment,
called enclave, for security-sensitive computations in user-
space processes. The enclave, for the most part, is strictly
protected from other parts of the system through memory
access control, memory encryption and integrity-check, at-
testation, etc [9, 27]. By design, Intel SGX assumes a powerful
attack model where only the CPU is trusted; everything else
could be compromised or malicious, including the firmware
(i.e., BIOS), the VMM (virtual machine monitor), and the OS
(operating system) kernel. Because of this, Intel SGX becomes
increasingly popular for security-sensitive applications, such
as secure remote computation, authentication, and digital
rights management. For example, enclaveDB is an SGX-based
database engine that can guarantee confidentiality, integrity,
and freshness for data and queries [31]; CYCLOSA is a se-
cure, scalable, and accurate private web search system [30];
and IRON is a secure functional encryption system [12]. In
addition, many popular libraries, such as mbed TLS and Tor,
have been ported to run in the SGX enclave [11, 17, 43], and
most major cloud providers also provide SGX-based remote
confidential computing services [16, 29].
Recent research on side-channel attacks has brought the

security of SGX into question [7, 18, 38, 41]. For example,
SgxPectre, the SGX-variant of Spectre [7], can read the se-
cret keys of SGX by exploiting the race condition between
injected, speculatively executed memory references and the
latency of branch resolution. There is relatively little atten-
tion paid to the (in)security of the SGX interface [24, 42]. In
particular, AsyncShock proposes a method to exploit known
synchronization bugs in the SGX by manipulating the thread

Session 11A: Enclaves and memory
security — Who will guard the guards?

971

https://doi.org/10.1145/3373376.3378486
https://doi.org/10.1145/3373376.3378486
https://doi.org/10.1145/3373376.3378486
https://www.acm.org/publications/policies/artifact-review-badging#available
https://www.acm.org/publications/policies/artifact-review-badging#functional

scheduler [42]; while Lee et al. exploit uninitialized structure
padding to leak enclave data [24].

Securing the enclave interface demands more than simple
sanitization of inputs: an enclave is an isolated execution
environment in the user-space. It, therefore, relies on the
untrusted supporting system to interact with the external
environment. Such interaction is bi-directional. Specifically,
an SGX application (i.e., the application whose address space
hosts the enclave) can call an enclave function using an
ECALL, an RPC-like mechanism. Vice versa, the enclave can
use an OCALL to temporarily exit the enclave and call an
untrusted function to access OS services. For example, an
SGX-based SQLite engine can use OCALLs to open an (en-
crypted) database file and read its content to serve a query
from the host application (ECALL). This design makes the
enclave rather challenging to secure because the enclave
interface can be called in arbitrary order and with any in-
puts, yet the enclave has little control over it besides input
sanitization.

In this paper, we first systematically study the attack sur-
face of the enclave interface, and then propose an extensible
framework to automatically analyze enclave libraries for
common vulnerabilities. Specifically, we categorize the en-
clave attack surface into four models: input manipulation,
call permutation, concurrent ECALLs, and nested calls. The
first model consists of attacks that manipulate the inputs to
enclave calls to check whether sufficient sensitization of the
inputs has been applied; The second one consists of attacks
that make arbitrary calls to the ECALL interface from the
untrusted code. Libraries often assume their API functions
are called in certain orders. For example, a database engine
(reasonably) assumes a database is opened before any queries
are executed. However, SGX itself does not impose any re-
strictions on the invocation of ECALLS. This model thus
check the enclave code when these assumptions do not hold;
The third model tests the enclave code for concurrency bugs
by invoking the ECALL interface from multiple threads; Fi-
nally, the last model checks the enclave code when ECALLs
are nested, i.e., a second ECALL is made while the enclave is
executing an OCALL in response to the first ECALL. These
four models are collectively called the COIN attacks, which
stands for Concurrency, Order, Inputs, and Nested, each cor-
responding to one attack model. In this paper, we focus on
the first three models and leave the nested model as future
work. We include the nested mode for completeness.

Given these attack methods, we designed an extensible
framework to systematically study the (in)security of enclave
libraries. The framework implements these attack models
in the front-end using instruction emulation and symbolic
execution. Specific policies to detect vulnerabilities can be
plugged into the framework to provide more accurate iden-
tification and classification of vulnerabilities. In our proto-
type, we implemented eight policies that cover information
leaks, control-flow hijackings, and memory vulnerabilities

(e.g., use-after-frees, heap/stack overflows). Other types of
vulnerabilities can be readily added to the framework with
additional policies. We applied the prototype to evaluate ten
popular open-source SGX projects on the GitHub, including
Intel SSL, SQLite3, mbedTLS, etc. We found 52 vulnerabilities
in them, including double-frees, use-after-frees, heap and
stack overflows, null-pointer de-references, heap and stack
memory leaks, etc. In one case, we can reliably dump the
entire memory of the mbedTLS-SGX enclave by manipulat-
ing the untrusted inputs. Each attack model contributed to
the discovery of these vulnerabilities, with input manipula-
tion being the most effective (42 vulnerabilities). We have
reported all these vulnerabilities to the affected projects and
provide bug fixes for some. These results demonstrate the
need for automated vulnerability detection tools that are
specifically designed to handle the complexity of the SGX
programming and trust model.

This paper makes the following contributions:
• We introduced the COIN attacks, a systematic analysis
of the SGX interface attack surface. COIN attacks consist
of concurrency, order, input, and nested call attacks.

• We proposed the design of an extensible framework tar-
geting the COIN attacks and implemented the design
with eight detection policies that cover many common
vulnerabilities.

• Weevaluated our systemwith ten open-source SGXprojects
and found (and reported) 52 vulnerabilities in them, in-
cluding a whole SGX memory leak.
The rest of the paper is organized as follows. We first de-

scribe the SGX programming model in Section 2. We then ex-
plain the COIN attacks in Section 3. Next, Section 4 presents
the system design and Section 5 evaluates the system. Later,
we discuss the related works in Section 6. Finally, we con-
clude the paper in Section 7.

2 Background
In this section, we introduce background information about
the SGX programming model to help understand the COIN
attack models.

2.1 SGX Programming Model
An SGX enclave is an isolated execution unit in the user
address space of its host process. It relies on the host process
as a proxy to interact with the environment, for example, to
access database files. The way this works is similar to RPC
(remote procedure call): the host process calls an enclave
function by marshaling the parameters before passing them
to the enclave; the enclave then unpacks the parameters,
executes the function, and returns the (marshaled) results.
This is named an ECALL. Vice versa, the enclave canmake an
OCALL to execute an untrusted function in the host process.
ECALLs and OCALLs constitute the enclave’s interface, i.e.,
its software attack surface.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

972

1 enclave {

2 include "../ocall_types.h"

3 from "sgx_tstdc.edl" import *;

4

5 trusted {

6 public void ecall_opendb([in, string] const char *dbname);

7 public void ecall_execute_sql([in, string] const char *sql);

8 public void ecall_closedb(void);

9 };

10

11 untrusted {

12 int ocall_stat([in, string] const char *path,

13 [in, out, size=size] struct stat *buf, size_t size);

14 int ocall_ftruncate(int fd, off_t length);

15 int ocall_getpid(void);

16 char* ocall_getenv([in, string] const char *name);

17 };

18 };

Figure 1. A part of the EDL file from SGX-SQLite

Intel provides an SDK to automate the creation of the en-
clave interface, defined by a domain language called EDL (en-
clave definition language). A tool in the SDK called Edger8r
parses an EDL file and creates stubs for the host program
and the enclave. A part of the EDL file from SGX-SQLite is
shown in Fig. 1. It defines three ECALLs (e.g., opendb and
execute_sql) and four OCALLs (e.g., getpid). The decla-
ration of parameters are annotated with keywords in, out,
string, and size. in and out denote the data flow direction.
For example, the buf parameter of ocall_stat is an in and
out parameter, i.e., the ocall will read from and write to the
associated buffer. If a parameter is a pointer, the EDL file
could also specify its size with either the size or string
(a null-terminated buffer) keywords. For instance, the size
of buf in ocall_stat is specified by the function’s third
parameter, also named as size. Edger8r parses the EDL
file and generates two stub files, one for the host program
and one for the enclave. Both files contain a definition for
each ECALL and OCALL, similar to RPC: one stub marshals
the parameters; the other unpacks the parameters, executes
the function, and returns the results. Edger8r automatically
generates code to sanitize parameters according to the anno-
tation. For example, it will copy only size bytes from and
into buf for ocall_stat. This addresses some basic security
issues but, as we will show, is grossly inadequate. Our sys-
tem also parses EDL files to obtain the basic semantics of the
ECALL/OCALL parameters.

The execution of the enclave starts with an ECALL. During
that, the enclave might make a few OCALLs in order to
serve the ECALL. For example, a contact manager can call
execute_sql to securely query its SGX-based database; to
process the query, the enclave makes a few OCALLs to read
the encrypted database file, which is normally encrypted
and stored in the (untrusted) file system. Therefore, ECALLs
and OCALLs constitute the software attack surface of the
enclave.

3 COIN Attacks
We systematically analyzed the software attack surface of
an enclave and summarized it with COIN attacks. COIN
stands for concurrency, order, inputs, and nested. Note that
we assume the attacker has full control over the host process
and the underlying OS, but he can only interact with the
enclave through its defined ECALL/OCALL interface. This
is consistent with the official SGX threat model.

Concurrent calls (concurrency): the attacker tries to
call enclave functions concurrently from multiple untrusted
threads. An enclave cannot assume that it will be called only
from a single thread at a time, or external synchronization
primitives will enforce proper lock semantics (instead, it
should use locks such as in-enclave spinlocks).

Call permutation (order): the attacker calls enclave func-
tions (i.e., ECALLs) in arbitrary orders. This model works
because an enclave often has an implicit assumption about
the order of various ECALLs. For example, SGX-SQLite ex-
poses three ECALLs, opendb, execute_sql, and closedb.
Apparently, opendb must be called before the other two.
Though, an enclave cannot assume any order of invocation
of its ECALLs. This attack could be particularly troublesome
for SGX libraries converted from existing libraries, which
almost always assume the correct order of invocation is the
response of their users.

Input manipulation (inputs): the enclave accepts in-
puts from the parameters of ECALLs and the return-values
of OCALLs. Even though Intel SGX SDK adds simple sanitiza-
tion to the parameters, such sanitization is often insufficient
because it lacks the knowledge of how the enclave uses its in-
puts. The effectiveness of this attack model is demonstrated
by the heap and stack overflows we found despite the main
focus of the added sanitization is to prevent buffer overflows.

Nested calls (nested): the attacker makes new ECALLs
in an (untrusted) OCALL handler, which has been initiated
by an earlier ECALL (thus the name of nested calls). Use SGX-
SQLite as an example again, the attacker first calls opendb
and execute_sql to query a database. The enclave makes
an OCALL in execute_sql, to read the database file. In the
(untrusted) handler of this OCALL, the attacker canmake any
ECALLs he wants, such as closedb. As mentioned before,
we defer this attack model to future work.

These attack models are not mutually exclusive. They can
be combined together to discover more vulnerabilities than
the sum of the individual models.

The COIN attacks are closely related to the Iago attack [6],
in which the untrusted OS kernel tries to explore the trusted
user-space process by manipulating syscall returns. The Iago
attack corresponds to input manipulation of OCALL returns
in our system. As such, our system has more attack models
with regard to SGX architecture.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

973

4 System Design
In this section, we present the design of an extensible frame-
work to check the security of SGX projects against (three
of) the COIN attacks. The framework aims at discovering
vulnerabilities before the production release of the enclave
code. Consequently, we assume that the enclave source code
is available.

EDL

API Parser

EDL
Parser

Bitcode
Parser

Clang/LLVM

Core
Module

Symbolic
Engine

Instruction
Emulator

Policy 2

Report 2
Report 1

Policy 1Enclave
Source Bitcode

Binary

API Info

Figure 2. Overview of the enclave analysis framework

Fig. 2 illustrates the overall architecture of the system.
Specifically, we compile the enclave source with the Clang
compiler into LLVM bitcode. We then parse the EDL file and
the bitcode to automatically extract the enclave interface
definition. The interface definition and the enclave binary
are passed to the core module for analysis. The core module
is the key component of the system. It employees an instruc-
tion emulator (based on QEMU [4]) and a symbolic execution
engine to systematically explore the enclave code. The core
module implements the three attack models to drive the ex-
ploration of the enclave code. However, the attack models
themselves cannot detect vulnerabilities. The core module
instead relies on extensible policies to detect specific vul-
nerabilities. Our prototype provides eight policies that can
detect common vulnerabilities such as heap/stack informa-
tion leaks and use-after-frees. More policies can be readily
integrated into the framework to detect more vulnerabilities.
In the rest of this section, we describe the main components
of our system in more detail. In this architecture, only the
API parser requires the source code of the enclave. It is pos-
sible to redesign the API parser to take the enclave binary
instead of the bitcode.

4.1 API Parser
The API parser analyzes the EDL file and the LLVM bitcode
of the enclave to extract the basic information about the
interface of the enclave. This information is passed to the
core module’s symbolic engine to map symbolic variables to
their memory layouts.

The API parser has two components, the EDL parser and
the bitcode parser. The former reads the EDL file and extract
the information such as variable types, data flow directions,
and variable of object size if it is a pointer. For example,

the dbname parameter of the ecall_opendb function is an
input-only string (Fig. 1); The latter parse the enclave bitcode
to extract memory layout of structure variables, such as
the buf parameter of ocall_stat, a variable of the struct
stat type. This is feasible because the Clang/LLVM compiler
encodes the memory layouts of structural variables in the
bitcode. It is possible to obtain the same information from
the binary or the source code alone. But this approach is
more reliable.

4.2 Core Module
The core module is the key component of the framework. It
consists of the controller, the instruction processor, the sym-
bolic engine, and the OCALL hooks, as shown in Fig. 3. The
controller manages the overall execution of the module; the
instruction processor uses a symbolic engine to run instruc-
tions of the enclave in a single- or multi-threaded setting; the
OCALL hooks provide an interface for the symbolic engine
to manipulate OCALL returns, which are a part of the en-
clave inputs. The policy module has close interaction with all
the components of the core module in order to control their
execution or to detect vulnerabilities. The policy module can
be extended with detectors for many types of vulnerabilities.
We will describe the details of the policy module later. The
main function of the core module is to implement the three
COIN attack models: input manipulation, call permutation,
and concurrent calls. Next, we describe how each attack
model is implemented in detail.

Controller

ECALL
List

OCALL
List

OCALL
Hooks

Symbolic Engine/
Instruction Emulator

Instruction Processor

Single
Thread

Multi
Thread

ECALL/OCALL
Types

Call
Sequence

Policy
Policy

Memory
Layout

Figure 3. Core module architecture

Call permutation: an SGX library often assumes specific
orders in which its exposed functions are called by the un-
trusted code. This model checks whether the library correctly
handles functions called in arbitrary/unexpected orders. It
can potentially discover memory management vulnerabili-
ties such as uninitialized memory accesses, use-after-frees,

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

974

double-frees, etc. Thismodel is implemented by the coremod-
ule’s controller. It accepts a list of ECALLs supported by the
enclave. The controller generates many random sequences
of ECALLs and passes them to the instruction processor.
The permutation of the calls randomizes the number and or-
der of ECALLs. For example, it could call the execute_sql
function of SGX-SQL without calling opendb first, or call
closedb twice, etc. Each call sequence is executed with the
same enclave instance, i.e., we create the (emulated) enclave
before the first ECALL and destroy it after the last ECALL in
order to keep the enclave states across the calls in the same
sequence. A new enclave is created for every sequence from
the call permutation list.
Call permutation is mixed with other two attack models

for effectiveness: a call sequence is emulated by the instruc-
tion processor in both single-threaded and multi-threaded
environments; and during the emulation, the symbolic en-
gine tries to explore the enclave by symbolizing the inputs,
i.e., ECALL parameters and OCALL returns.

Concurrent calls: each call sequence is executed in two
modes: the single-threaded and multi-threaded model. In the
former, each ECALL in the sequence is executed sequentially
by a single thread; while in the latter, each ECALL is exe-
cuted by a separate thread concurrently. All the threads for
a call sequence share a single lock to ensure that each thread
executes one instruction at a time. To control the concur-
rency, the controller maintains a thread to wait counter map.
The wait counter can be set by the policy module to pause
a thread from processing its current instruction until other
threads have completed a specific number of instructions.
This allows the policy module to control the concurrent ex-
ecution of the threads and makes the analysis possible to
reproduce.

Input manipulation: an enclave accepts two sets of in-
puts: ECALL parameters and OCALL returns, both under the
attacker’s control. Accordingly, an enclave should not trust
its inputs. Even though the SGX SDK automatically turns
the ECALL parameter annotation into sanitization checks,
these checks only cover a few basic cases. In addition, it can-
not provide any protection against OCALL returns (because
there is no annotation for OCALL returns). As such, enclave
developers need to apply additional checks for inputs. This
attack model tests whether these checks are adequate or
not. For better results, the framework employs a symbolic
execution engine to extensively explore the enclave code.
We first describe how inputs are symbolized.

Enclave inputs are symbolized into symbolic variables
according to their types, constraints, and layouts (from the
API parser). If an input is a pointer to a structure, we allocate
8 bytes of concrete memory for the pointer and target the
pointer to a chunk of the enclave heap memory. Fields of
the structure are then converted to symbols by the structure

layout. We then symbolize all the rest scalar inputs (e.g., int).
In most cases, inputs are passed to the enclave in registers.
As registers are not uniquely named, they will cause conflicts
during the execution. Therefore, we symbolize instead the
memory, into which the first mov instruction moves data
from the associated register. We build the enclave with the
-O0 flag to ensure that the function prologue always contains
the expected mov instructions.
The symbolic engine is based on concolic execution, i.e.,

the enclave code is executed concretely while maintain-
ing the relationship of (symbolic) variables. Therefore, the
same call sequence will be executed many times, firstly with
dummy seeds for symbolic variables (e.g., 0 for integers). The
framework maintains a symbolic variable to seeds mapping
to avoid re-execute the enclave with the same seeds. During
execution, the engine collects path constraints in terms of
symbolic variables. After the enclave is executed, the engine
uses a constraint solver to solve path constraints in order to
expand the part of the enclave code explored. Here, we also
use the API information to discard seeds that violate it. The
engine then executes the enclave again with the generated
inputs. As mentioned earlier, the symbolic engine hooks into
all the OCALL functions. When an OCALL function is to be
executed, it can determine the OCALL’s return and whether
the OCALL function will be executed or not. As such, the
core module can manipulate the inputs from both ECALLs
and OCALLs.

4.3 Policy Module
The policymodule has close interactionwith the components
of the core module. This allows custom policies to access the
program/enclave states and control aspects of the instruc-
tion emulation. For example, a use-after-free policy can hook
memory allocation and free functions of the enclave to keep
track of the valid memory, and memory access instructions
to check whether the accessed memory is valid or not. In
addition, if the current call sequence is being executed in
the multi-thread mode, the policy can temporarily pause the
execution of the current thread after memory free functions
in order to detect use-after-frees from another thread. If a
policy detects a vulnerability, it produces a customized re-
port. For example, the report for a use-after-free includes
the invalid memory region, the most recent allocation and
free sites of that memory, etc. Additionally, the core module
stores recently emulated 500 instructions in a ring buffer to
facilitate pattern-based vulnerability detection (e.g., informa-
tion leaks) and offline debugging of a reported vulnerability.

The policy module can be extended with policies to detect
specific vulnerabilities. In our prototype, we included eight
policies to detect common vulnerabilities, such as heap/stack
information leaks, use-after-frees, double-frees, stack/heap
overflows, and null-pointer de-references. We will describe
them in detail in the next section.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

975

Table 1. List of selected SGX projects from GitHub

Project Description Enclave LoC # of Bugs
mbedtls-SGX [11] Crypto and SSL/TLS support for embedded systems. 59, 228 11
SGX-Tor [17] Tor anonymity network. 316, 962 9
TaLoS [21] Secure TLS termination. 183, 958 7
Bolos-enclave [22] Trusted environment for blockchain applications. 8, 463 6
Intel-SGX-SSL [15] SSL cryptographic library from Intel. 6, 508 5
SGX_SQLite3 [43] Secure SQLite query. 118, 997 4
SGX-Migration [34] Live migration VMs. 2, 829 3
SGX-Wallet [1] Trusted password-wallet. 252 3
SGX-Reencrypt [19] Symmetric reencryption. 1, 772 2
SGXCryptoFile [32] Encrypting and decrypting HLS chunks. 157 2

5 Evaluation
In this section, we present the eight policies implemented
in our prototype and evaluate their effectiveness and perfor-
mance over ten open-source SGX projects from GitHub. Our
prototype was implemented based on the QEMU instruction
emulator and the Triton symbolic engine. Triton uses the
z3 theorem prover as its constraint solver. The API parser
is implemented based on the LLVM libtool. The policy mod-
ule supports eight policies to detect heap/stack information
leaks, ineffectual conditions, use-after-frees, double-frees,
heap/stack overflows, and null pointer dereferences. We call
vulnerabilities where a critical conditional check is under the
attacker’s control as an ineffectual condition. These policies
do not cover all the cases of these vulnerabilities but are still
very effective. The prototype currently works for the x86-64
Linux system, but it could be ported to other platforms (e.g.,
the Windows system). The main code-base has 4K+ lines of
code with additional 1K+ lines of source code for the policies.

5.1 Effectiveness
In this subsection, we first describe the overall effectiveness
of our system, and then the details of each policy.

5.1.1 Overview. We picked ten popular open-source SGX
projects from GitHub as test subjects, as listed in Table 1.
They can be categorized as either library wrappers (e.g., Intel-
SGX-SSL) 1 or SGX based applications (e.g., SGX-Wallet).
Their code sizes range from hundreds to about 320K lines of
source code. Table 1 also lists the number of verified vulner-
abilities we discovered from these projects. Table 2 further
breaks down the vulnerabilities of each project by the poli-
cies. For example, we found from Intel-SGX-SSL, an OpenSSL
wrapper developed by Intel, five vulnerabilities: three inef-
fectual conditions, one stack overflow, and one null-pointer-
dereference. We note that these vulnerabilities are not a part

1Library wrappers are often developed by third-party developers. e.g., Intel-
SGX-SSL is a library wrapper for OpenSSL developed by Intel.

of the original OpenSSL library. They instead were a part of
the wrapper.
This demonstrates the difficulty in writing secure code

for the SGX environment, particularly for wrappers of exist-
ing libraries: libraries generally defer the responsibility to
correctly call their functions to their users. This is a reason-
able assumption since libraries are a (trusted) part of user
programs. As a result, libraries are often designed without
extensive validation of user inputs. By wrapping a library in
SGX, the user inputs become untrusted by nature. Retrofitted
input validation, as shown by the vulnerabilities we discov-
ered, is hard to get right. For instance, ineffectual conditions,
where both sides of a critical condition check are under the
attacker’s control (or one side is a constant), are common
among the SGX projects we tested.
In total, our system found 52 vulnerabilities in these ten

projects. As mentioned earlier, our system implements three
attack models: input manipulation, call permutation, and
concurrent calls. We attribute a vulnerability to concurrent
calls if it is identified only in the multi-threaded mode; fur-
thermore, we attribute a vulnerability to input manipulation
if it is identified in a regular/expected sequence of ECALLs
(e.g., opendb is called before execute_sql). Table 3 cate-
gorizes the discovered vulnerabilities by attack models. In-
put manipulation is the most effective attack model with 41
vulnerabilities; while call permutation and concurrent calls
found most vulnerabilities related to resource management
(e.g., double-frees), as expected.

5.1.2 Policies. Heap information leak: The SGX SDK
provides a function to allocate heap memory in an enclave,
similar to malloc [26]. Data stored on the heap are accessed/
retained across different ECALLs. We have observed a com-
mon practice of storing public and secret data in the same
data structure, e.g., the private key to a TLS certificate may
be stored side by side to the IP address, which provides an
OCALL interface to send the non-sensitive IP address to the
I/O buffer for debug purposes. If an attacker manages to

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

976

Table 2. Reported vulnerabilities by types in evaluated projects

Project Heap info
leak

Stack
info leak

Ineffectual
condition UAF Double-

free
Stack
overflow

Heap
overflow

Null ptr
deref Total

mbedtls-SGX 2 3 3 1 2 11
SGX-Tor 2 2 1 4 9
TaLoS 1 1 1 2 1 1 7
Bolos-enclave 1 1 1 1 2 6
Intel-SGX-SSL 3 1 1 5
SGX_SQLite 4 4
SGX-Migration 2 1 3
SGX-Wallet 1 2 3
SGX-Reencrypt 1 1 2
SGXCryptoFile 2 2
Total 3 5 9 8 4 7 3 13 52

Table 3. Reported vulnerabilities by attack model

Policy Input Ma-
nipulation

Call Per-
mutation

Concurrent
Calls

Heap info leak 3
Stack info leak 5
Ineffectual condition 9
Use after free 5 3
Double free 1 1 2
Stack overflow 7
Heap overflow 3
Null ptr deref 13
Total 41 6 5

modify a pointer from the public data to the secrets, this
OCALL can silently leak the sensitive data.
Another common pattern that may lead to a heap infor-

mation leak happens when a loop is bounded by a symbolic
constraint (i.e., ECALL/OCALL inputs). For example, we have
found cases where the loop calls an OCALL to write data to
the outside. As the enclave could not determine how many
bytes have been written, it depends on the OCALL return to
calculate the next byte to write. In some of such cases, we
can cause the loop to dump the entire enclave heap memory
by manipulating the enclave inputs.
As such, we define a policy to detect heap information

leak where the attacker can control both the iteration of
the loop and a parameter passed to an OCALL in that loop.
If an enclave code matches this pattern, the attacker could
potentially invoke the OCALL on a large block of the heap
memory. This policy has the following steps:
1. The core module triggers an event to notify the policy

module about an infinite loop it encounters. We consider
a loop as an infinite loop if its loop condition contains at
least one free symbolic variable (i.e., a symbolic variable
without constraints).

2. The policy then checks if the loop condition is symbolic.

3. If the loop condition is symbolic, the policy extracts the
loop body and analyzes if it contains an OCALL or not.

4. If there is an OCALL, the policy uses the definition of
the OCALL (from the API parser) to identify memory
pointers in the parameters.

5. The policy reports a potential heap information leak if a
pointer points to the enclave heap and can be modified
in every iteration of the loop.

1 int

2 mbedtls_ssl_flush_output(mbedtls_ssl_context *ssl){

3 ...

4 while(ssl->out_left > 0){ // size_t type

5 buf = ssl->out_hdr + mbedtls_ssl_hdr_len(ssl) +

6 ssl->out_msglen - ssl->out_left;

7

8 //an indirect call to OCALL

9 ret = ssl->f_send(ssl->p_bio,

10 buf, ssl->out_left);

11

12 if(ret <= 0) // ret > ssl->out_left

13 return(ret);

14

15 ssl->out_left -= ret; // integer overflow

16 }

17 ...

18 }

Figure 4. Example heap information leak from mbedTLS-
SGX. Comments are added to help understand the bug.

Currently, our policy could not determine sensitivity of
the leaked memory and leave this task to human analysis.
We plan to introduce a source-code annotation system for
developers to mark sensitive data in SGX programs. Our
policy found seven potential heap information leaks. We
manually confirmed that three of them are critical. A case
study from the mbedtls-SGX project is shown in Fig. 4, which
allows the attacker to dump the entire enclave memory. The
while loop at Line 4 is bounded by ssl->out_left, which

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

977

has a type of size_t (i.e., unsigned integer). The sym-
bolic engine shows that ssl->out_left is initialized from
an ECALL input and is modified by an OCALL return during
each iteration (Line 15). This creates an infinite loop if we en-
sure ssl->out_left is not zero. In addition, ssl->f_send
is a function pointer that points to an OCALL and it has a
memory pointer parameter modified in each iteration (buf).
i.e., an OCALL is executed in every iteration (Line 9). This
piece of code thus satisfies all the requirements of the policy.
We note that the return value of ssl->f_send(), ret, is
only validated against ret <= 0 (Line 12). Any positive
value is accordingly legitimate, including values larger than
ssl->out_left. Because ssl->out_left is unsigned, this
will lead to an integer overflow at Line 15. Furthermore, be-
cause buf is modified by ssl->out_left in every iteration
(Line 5,6), the attacker can point it to arbitrary memory and
leak the whole enclave memory.

Stack information leak: In this policy, we focus on the
pattern where out-of-bound stack memory is copied to the
heap, usually with memcpy. This does not necessarily lead
to a stack information leak as the data remains inside the
enclave. However, the destination data structure on the heap
sometimes has a public interface that writes data out of the
enclave. Sensitive (stack) data, such as stack canaries and
return addresses, could be leaked to an attacker, allowing
them to de-randomize the enclave and launch a ROP (return-
oriented programming [23]) or other attacks.
Our stack information leak policy tries to locate poten-

tially vulnerable calls of memcpy that involve the stack and
heap. It currently does not search further to verify whether
the destination heap data structure has a public interface
to dump its content. We leave this task to manual analysis.
That is, this policy can detect stack memory over-reads but
needs to manually verify whether the stack memory can
be actually leaked (we can apply static points-to analysis to
automate it). This policy has the following steps:

1. Check if the length of memcpy is symbolic, i.e., the at-
tacker controls how many bytes to copy, leading to a
stack memory over-read.

2. Check if the source address of memcpy points to the stack.
The core module keeps track of the enclave memory allo-
cation and thus can easily do this.

3. Check if the destination address points to the heap.

This policy marked 16 memcpy as suspicious, and we con-
firmed that five of them have a public interface. Fig. 5 shows
an example from the mbedtls-SGX project (This vulnerability
was reported independently by a GitHub user [10].) Function
ssl_server uses a fixed size stack buffer, client_ip[16], to
store the client’s IP address accepted by anOCALL, mbedtls_-
net_accept_ocall. The OCALL also returns the length of
client IP in cliip_len (Line 7-9). Next, ssl_server calls
mbedtls_ssl_set_client_transport_id and passes both

1 int ssl_server(){

2 // vulnerable stack buffer

3 unsigned char client_ip[16] = {0};

4 ...

5 // enclave receives unsafe client ip and its length

6 // in client_ip and cliip_len

7 if((ret = mbedtls_net_accept_ocall(&listen_fd,

8 &client_fd, client_ip,

9 sizeof(client_ip), &cliip_len))

10 != 0){

11 ...

12 }

13 if(opt.transport ==

14 MBEDTLS_SSL_TRANSPORT_DATAGRAM){

15 if((ret =

16 mbedtls_ssl_set_client_transport_id(

17 &ssl, client_ip, cliip_len)) != 0){

18 ...

19 }

20 }

21 }

22

23 int mbedtls_ssl_set_client_transport_id(

24 mbedtls_ssl_context *ssl,

25 const unsigned char *info,

26 size_t ilen){

27 ...

28 mbedtls_free(ssl->cli_id);

29 if((ssl->cli_id = mbedtls_calloc(1, ilen))

30 == NULL)

31 return(MBEDTLS_ERR_SSL_ALLOC_FAILED);

32

33 // stack memory overread if ilen > sizeof(info)

34 memcpy(ssl->cli_id, info, ilen);

35 ssl->cli_id_len = ilen;

36

37 }

Figure 5. Example stack info leak from mbedTLS-SGX.

client_ip and cliip_len to it (Line 16-17). In mbedtls_-
ssl_set_client_transport_id, ilen (i.e., cliip_len) is
used to allocate memory for ssl->cli_id and later copied
data from info (i.e., client_ip) to it (Line 28-35). There-
fore, an attacker can cause a stack memory over-read by
manipulating the inputs from mbedtls_net_accept_ocall.
Moreover, ssl->cli_id has a public interface to retrieve its
content, including the stack memory.

Ineffectual condition: A conditional check in the en-
clave becomes ineffectual if the attacker can control its out-
come. Therefore, an ineffectual condition allows an attacker
to bypass validation, avoid authentication, etc. Ineffectual
conditions could be easily identified by checking whether
one side or both sides of a conditional check contain sym-
bolic variables. However, we further narrow them down to
more probable cases by checking whether the condition is
followed by an unconditional control transfer, which is likely
an error handling exit. This policy has the following steps:

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

978

1 int

2 reencrypt(client_id *clid, uint8_t *request,

3 size_t requestlen, uint8_t *response,

4 size_t *responselen) {

5 ...

6 // keyin originates from the unsafe ECALL param clid

7 if((ret = check_policy(&keyin, &keyout, *clid,

8 keyIDin, keyIDout))

9 != REENCRYPT_OK) {

10 ...

11 }

12 // OCALL to get (unsafe) timestamp

13 if(ret = unsafe_timestamp(×tamp)

14 != REENCRYPT_OK){

15 ...

16 }

17 // both sides of the conditional statement

18 // contain symbolic variables

19 if (timestamp > keyin->expiration_date ||

20 timestamp > keyout->expiration_date) {

21 ret = REENCRYPT_KEY_EXPIRED;

22 goto err;

23 }

24

25 if ((ret = decrypt(&m, &mlen,c,clen,

26 keyin)) != REENCRYPT_OK) {

27 ...

28 }

29 }

Figure 6. Ineffectual condition from SGX-Reencrypt

1. An ineffectual condition is identified if both sides of the
condition contain symbolic variables or if one side con-
tains symbolic variables and the other side is a constant.

2. It further checks if the conditional check is followed by
an unconditional control transfer within a basic block of
no more than five instructions.

This policy detected nine ineffectual conditions. A case
study from the SGX-Reencrypt project in Fig. 6 clearly demon-
strates the consequences of ineffectual conditions. The con-
dition in Line 19 and 20 is ineffectual because timestamp,
keyin->expiration_date, keyout->expiration_date all
come from untrusted inputs. timestamp is updated by an
OCALL unsafe_timestamp; the rest two variables originate
from an ECALL input, passed in the parameter clid. This
condition is followed by a goto statement, which returns an
error code if the key has expired. (Line 21-22). As such, this
vulnerability allows an attacker to reuse an expired key.

Use-after-free: Use-after-free is one of the most common
memory vulnerabilities in software [28]. In SGX, access to
freed memory can cause an enclave to crash, use unexpected
values, or even execute arbitrary code. The conventional
method to detect use-after-frees is to maintain the allocat-
ed/free status of the memory and verify each memory access
against it. Use-after-free is generally caused by faulty mem-
ory management. It becomes more notable with the call
permutation and concurrent calls attack models.

1 sqlite3* db; // database object

2

3 int sqlite3SafetyCheckOk(sqlite3 *db){

4 u32 magic;

5 if(db==0){

6 return;

7 }

8 magic = db->magic; // use

9 }

10 void sqlite3_close(sqlite3 *db){

11 if(sqlite3GlobalConfig.bMemstat){

12 sqlite3_mutex_enter(mem0.mutex);

13 sqlite3GlobalConfig.m.xFree(db);

14 sqlite3_mutex_leave(mem0.mutex);

15 }

16 }

17 void ecall_opendb(const char *dbname){

18 rc = sqlite3_open(dbname, &db);

19 }

20 void ecall_execute_sql(const char *sql){

21 rc = sqlite3_exec(db, sql, callback, 0, &zErrMsg);

22 }

23 void ecall_closedb(){

24 sqlite3_close(db);

25 // forget to set db = 0

26 }

Figure 7. Use-after-free from SGX-SQLite

This policy leverages the multi-threaded execution sup-
port in the core module. Specifically, it hooks the free func-
tion and each memory dereference, and performs the follow-
ing actions in the callback:
1. If a free function is called, the policy requests the core

module to pause the associated thread until other threads
have completed N instructions.

2. If a memory dereference event is triggered, the policy
validates raises an alert if the addressed memory has
been freed.
This policy detected eight use-after-frees, five by call

permutation, and three by concurrent calls. Fig. 7 shows
one of the use-after-frees in the SGX-SQLite project. The
original SQLite library lets its user maintain its main data
structure, sqlite3*. The SGX-SQLite library is considered
a user (wrapper) of SQLite. It creates an sqlite3 object in
ecall_opendb, uses that object in ecall_execute_sql, and
destroys that in ecall_closedb. Because the enclave for-
gets to reset db to null (Line 25), the following call sequence
will lead to a use-after-free vulnerability: ecall_opendb,
ecall_closedb, ecall_execute_sql.We note that a proper
fix to this problem must use locks to correctly update the db
pointer, as well as synchronizing the access to the database.

Double-free: Double free is another type of common re-
source management vulnerability. Our double-free detection
policy follows a similar approach as the use-after-free policy
except that it checks whether a block of memory has been

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

979

1 int

2 ecall_change_master_password(const char* old_password,

3 const char* new_password) {

4 if (strlen(new_password) < 8

5 || strlen(new_password)+1 > MAX_ITEM_SIZE)

6 ...

7 call_status = ocall_load_wallet(&ocall_ret,

8 sealed_data, sealed_size);

9 ...

10 sealing_status = unseal_wallet(

11 (sgx_sealed_data_t*)sealed_data,

12 wallet, plaintext_size);

13 ...

14 if (strcmp(wallet->master_password,

15 old_password) != 0) {

16 ...

17 }

18 strncpy(wallet->master_password, new_password,

19 strlen(new_password)+1);

20 ...

21 sealing_status = seal_wallet(wallet,

22 (sgx_sealed_data_t*)sealed_data,

23 sealed_size);

24 free(wallet); // first free

25 if (sealing_status != SGX_SUCCESS) {

26 free(wallet); // second free

27 ...

28 }

29 ...

30 }

Figure 8. Example double-free from SGX-Wallet

freed more than once. We pick an example from the SGX-
Wallet project to demonstrate the vulnerability (Fig. 8). SGX-
Wallet aims at securely storing sealed data on the untrusted
system by sealing the data in the enclave. Function ecall_-
change_master_password() allows a user to change the
master password of the wallet after validating the old pass-
word against the sealed wallet. Specifically, it loads the sealed
wallet (stored in the untrusted world) with an OCALL (Line
7, 8), unseals it (Line 10-12), and then compares it to the old
password (Line 14, 15). Clearly, an invalid new password or
errors in seal_wallet will free the wallet twice, leading to
a double-free vulnerability (Line 24-26).

Stack overflow: Stack overflow is a common software
vulnerability. It is still a critical issue for SGX-based software.
An attacker can exploit stack overflows to overwrite control
data on the stack, as well as sensitive enclave data, such
as secret keys. Our policy leverages __stack_chk_fail to
detect stack overflows, which is a compiler intrinsic inserted
by the compiler into programs to detect stack overflows. The
policy uses symbolic execution to actively trigger the __-
stack_chk_fail function by calculating path constraints
leading to them. Normally, stack overflows can be exploited
to hijack return addresses on the stack. However, that might
be blocked by the stack canary. We found some interesting
cases where an attacker could break the enclave trust model
without additional information leaks to bypass the canary.
Such an example is shown in Fig. 9.

Function ssl_client() in Fig. 9 takes opt, an unsafe ob-
ject originated from an ECALL input. The SGX SDK’s basic
memory sanitizer ensures the opt object is of the correct size.

1 int ssl_client(client_opt_t opt, char* headers[],

2 int n_header, unsigned char* output,

3 int length){

4

5 unsigned char buf[16385]; // var for SSL certificate

6 unsigned char psk[32]; // vulnerable local buffer

7 ...

8

9 if(strlen(opt.psk)){

10 ...

11 psk_len = strlen(opt.psk) / 2;

12

13 // if len(opt.psk)>64, overflow buffer psk

14 for(j = 0;j < strlen(opt.psk);j += 2){

15 c = opt.psk[j];

16 ...

17 psk[j/2] = c << 4;

18 ...

19 c = opt.psk[j + 1];

20 ...

21 psk[j/2] |= c;

22 }

23 }

24 }

Figure 9. Example stack overflow from mbedtls-SGX

However, its field, opt.psk, is an unconstrained string, i.e.,
it can have arbitrary length. In this function, the loop (Line
14-22) copies the string’s bytes to a local buffer, psk, with-
out checking whether the string fits in the buffer, leading to
a stack overflow. Even worse, psk is stored below another
buffer, buf, which is used to temporarily store the SSL cer-
tificate. As such, an attacker can overwrite the certificate
with malicious input. This example demonstrates the limi-
tation of the SDK’s annotation-based basic sanitization: it
can only provide basic protection to top-level data structures.
Even though the developer could use user_check to sanitize
lower-level data structures, it is not convenient and usually
incompletely applied.

Heap overflow: This policy is similar to AddressSani-
tizer [36]: the core module maintains the heap bounds. The
policy hooks memory write functions. When triggered, the
policy first locates the destination heap buffer and checks
if the memory write function overruns the buffer. For per-
formance reasons, we hook two memory write functions,
memcpy and memset.

An example heap overflow we detected is shown in Fig. 10.
The function allocates memory for cfg to accommodate the
unsafe unix_socket_path, if parse_port_config receives
defaultaddr as NULL. A smartllist generator uses addr-
port to define the unix_socket_path. There is a potential
integer overflow in Line 5 that may lead to smaller memory
being allocated 2 and further a heap overflow in Line 21.

2The SGX hardware/software may put a limit on the size of the parameter.
Our emulator assumes there is no such limit.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

980

1 static port_cfg_t* port_cfg_new(size_t namelen)

2 {

3 ...

4 // integer overflow causes less memory allocated

5 port_cfg_t *cfg = tor_malloc_zero(

6 sizeof(port_cfg_t) + namelen + 1);

7 ..

8 return cfg;

9 }

10 static int

11 parse_port_config(smartlist_t *out, ..,

12 const char *defaultaddr, ..){

13 ...

14 size_t namelen = unix_socket_path ?

15 strlen(unix_socket_path) : 0;

16 port_cfg_t *cfg = port_cfg_new(namelen);

17 ..

18 if (unix_socket_path) {

19 ...

20 // heap overflow if integer overflow triggered

21 memcpy(cfg->unix_addr, unix_socket_path,

22 namelen + 1);

23 ...

24 tor_free(unix_socket_path);

25 }

26 }

Figure 10. Example heap overflow from SGX-Tor

Null pointer dereference: Null pointer dereference of-
ten results in a segmentation fault unless the exception is han-
dled. This policy uses the symbolic engine to query whether
the address of a memory access is 0 or not. Fig. 11 shows an
example from the SGX-CryptoFile project. In this example, _-
tmp_encMessageOut originates from the unsafe pms and can
be NULL. This leads to a null pointer dereference in Line 26.
We note that the auto-generated enclave interface function,
sgx_sgxEncryptFile, uses memcpy_s to avoid this problem.
However, the internal function sgxEncryptFile fails to do
the same. It seems that the developer was unaware that the
interface could set the memcpy destination to NULL.

5.2 Performance
We evaluated our prototype on an Ubuntu server (18.04 LTS)
with an Intel Core i7 processor and 32 GB of memory. We
built the test SGX projects with Intel SGX Linux SDK (v2.5)
and Clang/LLVM (v9.0). We allocated 30 hours for each test
project. Projects like SGX-wallet and SGX-CryptoFile fin-
ished within 4 hours. Overall, the multi-thread mode runs
6.5x times longer than the single-thread mode because of the
frequent locks and delays. Our prototype is compatible with
most of the enclave code we tested except instructions for
some hardware features (e.g., AES-NI instruction set), which
are not supported by the underlying Triton and QEMU en-
gines. Due to the limited memory size, we could apply at
most 3 policies simultaneously at a time. Symbolic engines
are known to consume a large amount of memory.

1 static sgx_status_t SGX_CDECL sgx_sgxEncryptFile(void* pms){

2 ...

3 // _tmp_encMessageOut could be NULL, results in

4 // _in_encMessageOut to be NULL

5 if (_tmp_encMessageOut != NULL && _len_encMessageOut != 0) {

6 if ((_in_encMessageOut = (unsigned char*)

7 malloc(_len_encMessageOut)) == NULL) {

8 }

9 ...

10 }

11 sgxEncryptFile(_in_decMessageIn, _tmp_len,

12 _in_encMessageOut, _tmp_lenOut);

13

14 if (_in_encMessageOut) {

15 if (memcpy_s(_tmp_encMessageOut, _len_encMessageOut,

16 _in_encMessageOut, _len_encMessageOut)) {

17 }

18 }

19 }

20

21 void sgxEncryptFile(unsigned char *decMessageIn, size_t len,

22 unsigned char *encMessageOut, size_t lenOut){

23 uint8_t p_dst[lenOut];

24 ...

25 // encMessageOut should be checked for NULL

26 memcpy(encMessageOut, p_dst, lenOut);

27 }

Figure 11. Null pointer dereference from SGX-CryptoFile

6 Related Work

Iago attacks: Iago attacks, an inspirational work by Check-
oway et al., are closely related to the COIN attack model [6].
They question the security of systems such asOvershadow [8]
that protect user-space applications against complex, vul-
nerable, or compromised operating system kernels with the
help of virtualization. It demonstrates that a malicious OS
kernel can compromise a user process by manipulating the
syscall returns alone. Our system targets SGX enclaves. The
attack surface of an enclave is more flexible than that of a
user process because an enclave exposes both ECALL and
OCALL functions, and the attacker can invoke these APIs in
arbitrary orders. COIN attacks accordingly consist of four
attack methods with the additional concurrency, order, and
nested attacks that are not in Iago attacks. We also built an
extensible framework to check the enclave code for common
vulnerabilities.

SGX security: In recent years, there has been a number
of research on the micro-architectural side-channel attacks
against Intel SGX [7, 18, 38, 41]. For example, Foreshadow
leverages a speculative execution bug from Intel x86 pro-
cessors to reliably leak plaintext enclave secrets from the
CPU cache [38]. And SgxPectre exploits the race condition
between speculatively executed memory references and the
latency of branch resolution to steal seal and attestation
keys [7]. Compared to these systems, we focus on the soft-
ware attack models common to the enclave software and
build an extensible framework to evaluate the security of
enclave software regarding these attack models.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

981

On the other side, there are relatively few efforts to study
the enclave software interface. Lee and Kim demonstrated
that uninitialized padding bytes from the enclave could leak
sensitive data [24]. Asyncshock proposed a method to exploit
known race conditions in the unsafe multi-threaded code of
the enclave [42]. Recently, a comprehensive study on trusted
runtime code evaluates eight widely used enclave runtimes
and reports ten distinct classes of sanitization flaws [39].
In comparison, our research proposes the COIN attacks, a
systematic model of attacks against the enclave software,
and built a framework to evaluate the enclave code with
these attack methods. This framework can be used to test the
enclave code before releasing. Haven and SCONE [2, 3] are
two systems that host unmodified applications/containers
in SGX secure enclave. However, they do not provide any
confidentiality or integrity guarantees and ignores the SGX
coding recommendations from Intel. So, we do not consider
similar systems in our threat model. Finally, Glamdring is
a source-level framework that automatically partitions an
application into untrusted and enclave parts by identifying
functions that may be exposed to or may affect sensitive data
[25]. Our system would be useful to check the security of
the interfaces of generated enclaves.

Vulnerability detection: There are many different soft-
ware vulnerability detection methods, such as fuzzing and
concolic/static/dynamic analysis. In this section, we could
only mention work related to SGX or other TEEs (trusted
execution environment). Fuzzing is popular for its effective-
ness and scalability but might be lacking in completeness and
compatibility. For example, because of TEE’s locked-down
nature, dynamic analysis is difficult to apply [13]. To address
this problem, PARTEMU introduces an emulation based AFL
fuzzing method specific to ARM TrustZone. As ARM Trust-
Zone applications are tightly coupled with TrustZone oper-
ating systems, PARTEMU focuses on how to handle TZOS
calls [14]. Our framework overcomes incompleteness using
concolic execution and is compatible with the SGX enclave
through instruction emulation.

Moat applies formal verification to prove that an enclave
does not leak its secrets to a powerful adversary. It requires
annotations on the sensitive data and tracks the data flow
to verify if an adversary could observe them [37]. Instead,
our framework only requires the source code and detects
vulnerabilities of common categories such as information
leaks and use-after-frees. Similar to other best-effort vulner-
ability detection systems, our framework cannot guarantee
the absence of vulnerabilities of any specific types.

SGX-Step is a framework that allows a user to single-step
(instruction-level) enclave execution [40]. This system is
useful to verify vulnerabilities reported by our system. A
new ASLR scheme, SGX-Shield, secretly bootstraps the en-
clave memory space layout with a finer-grained random-
ization [35]. However, there are also SGX-ROP, Guard’s

Dilemma, and Dark-ROP [5, 23, 33], which demonstrate
that return-oriented programming attacks could be mounted
against an ASLR enabled SGX enclave if there is a memory
vulnerability in the enclave. SGXBounds [20] offers protec-
tion against out-of-bounds memory accesses in the SGX
enclave. This protection may detect some of the memory
overflow vulnerabilities detected by our system with addi-
tional cost memory and runtime.

7 Summary
Wehave described the COIN attacks that can be used to target
SGX-based code through its exposed ECALLs and OCALLs.
The COIN attacks consist of Concurrency, Order, Inputs,
and Nested call attacks. We further presented the details of
an extensible framework, based on instruction emulation
and symbolic execution, that implements the COIN attack
models with policy plugins. Each policy detects a specific
type/pattern of vulnerabilities. Additional policies can be
integrated into the system to improve effectiveness. Our
experiments with ten open-source SGX projects demonstrate
the various vulnerabilities common in these projects.

8 Availability
The prototype is available as an open-source project at https:
//github.com/mustakcsecuet/COIN-Attacks with the GPL-
3.0 license.

9 Acknowledge
We would like to thank the anonymous reviewers for their
insightful comments that helped improve the presentation of
this paper. This project was partially supported by National
Science Foundation (NSF) under Grant 1453020 and 1738912.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of NSF. We also thank the open-
source QEMU, LLVM/Clang, and Triton projects.

References
[1] Alberto Sonnino. 2019. SGX-wallet. https://github.com/asonnino/sgx-

wallet.
[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’keeffe, Mark L Stillwell, et al. 2016. SCONE: Secure Linux Containers
with Intel SGX.. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16). 689–703.

[3] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding
applications from an untrusted cloud with haven. ACM Transactions
on Computer Systems (TOCS) 33, 3 (2015), 8.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator..
In USENIX Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[5] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and
Ahmad-Reza Sadeghi. 2018. The Guard’s Dilemma: Efficient code-
reuse attacks against Intel SGX.. In 27th USENIX Security Symposium
(USENIX Security 18). 1213–1227.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

982

https://github.com/mustakcsecuet/COIN-Attacks
https://github.com/mustakcsecuet/COIN-Attacks
https://github.com/asonnino/sgx-wallet
https://github.com/asonnino/sgx-wallet

[6] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the
system call API is a bad untrusted RPC interface.. In ASPLOS, Vol. 13.
253–264.

[7] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX
Enclaves Via Speculative Execution. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 142–157.

[8] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrah-
manyam, Carl A Waldspurger, Dan Boneh, Jeffrey Dwoskin, and
Dan RK Ports. 2008. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. ACM SIGOPS
Operating Systems Review 42, 2 (2008), 2–13.

[9] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016, 086 (2016), 1–118.

[10] Eadom. 2018. Stack memory leak issue from SGX-mbetls project,
reported by an independent GitHub user. https://github.com/bl4ck5un/
mbedtls-SGX/issues/13.

[11] Fan Zhang. 2019. SGX-mbedtls. https://github.com/bl4ck5un/mbedtls-
SGX.

[12] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gor-
bunov. 2017. Iron: functional encryption using Intel SGX.. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 765–782.

[13] G. Beniamini. 2019. FuzzZone. https://github.com/laginimaineb/fuzz_
zone/tree/master/FuzzZone.

[14] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen,
Michael Grace, Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent
Simon, Hayawardh Vijayakumar, et al. 2019. PARTEMU: Enabling
Dynamic Analysis of Real-World TrustZone Software Using Emulation.
In Proceedings of the 29th USENIX Security Symposium (USENIX Security
2020)(To Appear).

[15] Intel. 2019. Intel SSL. https://github.com/intel/intel-sgx-ssl.
[16] Jim Gordon. 2018. Microsoft* Azure confidential computing with

IntelÂő SGX. https://intel.ly/2Db5x1Z.
[17] KAIST INA. 2019. SGX-Tor. https://github.com/kaist-ina/SGX-Tor.
[18] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu

Song, and Nael Abu-Ghazaleh. 2018. Spectre returns! speculation
attacks using the return stack buffer.. In 12th {USENIX} Workshop on
Offensive Technologies ({WOOT} 18).

[19] Kudelski Security. 2019. SGX-Reencrypt. https://github.com/
kudelskisecurity/sgx-reencrypt.

[20] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan
Trach, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2017.
SGXBOUNDS: Memory safety for shielded execution. In Proceedings of
the Twelfth European Conference on Computer Systems. ACM, 205–221.

[21] Large-Scale Data & Systems (LSDS) Group. 2019. TaLoS. https://github.
com/lsds/TaLoS.

[22] Ledger. 2019. BoLoS. https://github.com/LedgerHQ/bolos-enclave.
[23] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi,

Changho Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon
Kang. 2017. Hacking in darkness: Return-oriented programming
against secure enclaves. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 523–539.

[24] Sangho Lee and Taesoo Kim. 2017. Leaking uninitialized secure enclave
memory via structure padding. arXiv preprint arXiv:1710.09061 (2017).

[25] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, et al. 2017. Glamdring: Automatic
Application Partitioning for Intel {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17). 285–298.

[26] FrankMcKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon John-
son, Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® software

guard extensions (intel® sgx) support for dynamic memory manage-
ment inside an enclave. In Proceedings of the Hardware and Architec-
tural Support for Security and Privacy 2016. ACM, 10.

[27] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013.
Innovative instructions and software model for isolated execution.
Hasp@ isca 10, 1 (2013).

[28] mitre. 2019. 2019 CWE Top 25 Most Dangerous Software Errors.
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html.

[29] Nelly Porter, Jason Garms, Sergey Simakov. 2018. Introducing Asylo:
an open-source framework for confidential computing. https://bit.ly/
2YtVwof.

[30] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak,
Antoine Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, and
Valerio Schiavoni. 2018. CYCLOSA: Decentralizing PrivateWeb Search
Through SGX-Based Browser Extensions0. In 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE.

[31] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. En-
claveDB âĂŞ A secure database using SGX.. In To appear in the
Proceedings of the IEEE Symposium on Security & Privacy, May
2018. IEEE. https://www.microsoft.com/en-us/research/publication/
enclavedb-a-secure-database-using-sgx/

[32] Ricardo de Souza Costa. 2019. SGXCryptoFile. https://github.com/
rscosta/SGXCryptoFile.

[33] Michael Schwarz, Samuel Weiser, and Daniel Gruss. 2019. Practical
enclave malware with Intel SGX. In International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment. Springer,
177–196.

[34] Secure Systems Group (SSG) at Aalto University. 2019. SGX-migration.
https://github.com/SSGAalto/sgx-migration.

[35] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, In-
sik Shin, Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs.. In NDSS.

[36] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A fast address sanity checker..
In Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). 309–318.

[37] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015.
Moat: Verifying confidentiality of enclave programs.. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1169–1184.

[38] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas FWenisch, Yuval Yarom, and
Raoul Strackx. 2018. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution.. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 991–1008.

[39] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D
Garcia, and Frank Piessens. 2019. A tale of two worlds: Assessing the
vulnerability of enclave shielding runtimes. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1741–1758.

[40] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step:
A practical attack framework for precise enclave execution control.
In Proceedings of the 2nd Workshop on System Software for Trusted
Execution. ACM, 4.

[41] Jinwen Wang, Yueqiang Cheng, Qi Li, and Yong Jiang. 2018. Interface-
Based Side Channel Attack Against Intel SGX. arXiv preprint
arXiv:1811.05378 (2018).

[42] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza.
2016. AsyncShock: Exploiting synchronisation bugs in Intel SGX
enclaves.. In European Symposium on Research in Computer Security.
Springer, 440–457.

[43] Yerzhan Mazhkenov. 2019. SGX-SQLite. https://github.com/yerzhan7/
SGX_SQLite.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

983

https://github.com/bl4ck5un/mbedtls-SGX/issues/13
https://github.com/bl4ck5un/mbedtls-SGX/issues/13
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/intel/intel-sgx-ssl
https://intel.ly/2Db5x1Z
https://github.com/kaist-ina/SGX-Tor
https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/lsds/TaLoS
https://github.com/lsds/TaLoS
https://github.com/LedgerHQ/bolos-enclave
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://bit.ly/2YtVwof
https://bit.ly/2YtVwof
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://www.microsoft.com/en-us/research/publication/enclavedb-a-secure-database-using-sgx/
https://github.com/rscosta/SGXCryptoFile
https://github.com/rscosta/SGXCryptoFile
https://github.com/SSGAalto/sgx-migration
https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite

A Artifact Appendix
A.1 Abstract
Our artifact contains source files of the COIN attacks frame-
work and eight evaluated policies. The framework imple-
ments the concurrency, order, and inputs models of COIN
attacks. It is based on the following open-source projects:
QEMU, Triton, and Clang/LLVM. The implementation has
three major parts: 1) a python EDL file parser, 2) an LLVM
libtool to extract information from the LLVM bitcode, and
3) the core module to analyze the enclave code for vulnera-
bilities based on the three COIN attack models. The artifact
also has several small benchmarks (including a clone of the
SGX_SQLite project). The artifact does not require the host
machine to have an SGX-enabled CPU, only Intel SGX SDK.
Following is the directory tree of the artifact:

COIN_Attack

src

semantics

llvm_src

lib/Transforms/EnclaveSemantics

pyedl

core

Triton/src/enclaveCoverage

scripts

PoCs

SGX_SQLite

PoCs

A.2 Description
• Algorithm: COIN attacks (concurrency, order, and in-
puts) to evaluate the security of SGX enclaves.

• Program: SGX enclave built with Intel SGX SDK (v 2.5)
in a Linux distribution.

• Compilation: Clang (v 10.0.0), included with the arti-
fact.

• Data set: Eight micro-benchmarks and a clone of the
SGX-SQLite project from https://github.com/yerzhan7/
SGX_SQLite.

• Run-time environment: Our artifact has been devel-
oped and tested on Linux environment (Ubuntu 18.04.3
LTS server OS). The software dependencies are either
included in the artifact or installed with apt.

• Hardware: We used Intel Core i7 (32 GB memory) and
Intel Xeon E3-1275 (64 GB memory) for testing. Complex
SGX test projects (e.g. mbedTLS) may consume upto 48
GB memory.

• Execution: The micro-benchmarks takes about 30 mins
each and the SGX-SQLite analysis takes 2+ hours on our
test machines.

• Output: The artifact outputs a report containing one
or more vulnerabilities (each report includes 200 instruc-
tions and input mapping for debug purpose).

• Experiments: Experiment results are explained at https:
//github.com/mustakcsecuet/COIN-Attacks/blob/master/
scripts/EXPERIMENT.md.

• How much disk space required: The artifact after
build requires around 45 GB disk space (35 GB to host the
compiler).

• How much time is needed to prepare workflow: It
takes about 1 hour to build the artifact.

• Publicly available: DOI: 10.5281/zenodo.3605266.
The latest version (preferred) will always be available
at https://github.com/mustakcsecuet/COIN-Attacks. Use
the Zenodo project for reproduce purpose only.

• Code licenses: GNU General Public License v3.0.

A.3 Installation
The setup is divided into three steps: install Intel SGX SDK
at /opt/intel/sgxsdk/; build the Clang/LLVM compiler
from the included source code; install the Triton symbolic
engine along with the z3 solver from the source too. Instal-
lation depends on the Ubuntu packages such as gcc, g++,
python, binutils, automake, etc. A more detailed instruc-
tion is available at https://github.com/mustakcsecuet/COIN-
Attack/blob/master/README.md.

A.4 Experiment workflow
First run the python EDL parser to parse the EDL file; then
use Clang to compile (SGX_Mode=SIM) the SGX project to
generate both the enclave bitcode (using the gold plugin)
and enclave shared object (.so); next, use the LLVM libtool
to extract the memory layout information from the bitcode;
finally, use the python code coverage tool to test the enclave
interface against COIN attacks. The code coverage tool can
explicitly set the number of seeds to try for each ECALL
sequence and the number of instructions to emulate.
python e d l P a r s e . py Enc l ave / Enc l ave . e d l
opt − l o ad LLVMEnclaveSemantic . so < en c l a v e . bc
python cove rage . py enc l a v e . so N_SEED N_INST

Our artifact includes eight small benchmarks to test an en-
clave for eight different vulnerabilities. The source of bench-
marks is available under COIN-Attacks/PoCs/. It also in-
cludes the SGX-SQLite project (real benchmark) because
some of the vulnerabilities we have reported have been
patched in the latest code.

A.5 Evaluation and expected result
Our artifact includes eight different types of vulnerability
detection policies. They can be categorized as memory vul-
nerabilities, information leaks, and control-flow hijacks. Each
vulnerability report follows a common format:
<vulnerability report header>
<last 200 executed instructions>
<the memory to input mappings>

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

984

https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite
https://github.com/mustakcsecuet/COIN-Attacks/blob/master/scripts/EXPERIMENT.md
https://github.com/mustakcsecuet/COIN-Attacks/blob/master/scripts/EXPERIMENT.md
https://github.com/mustakcsecuet/COIN-Attacks/blob/master/scripts/EXPERIMENT.md
https://github.com/mustakcsecuet/COIN-Attacks
https://github.com/mustakcsecuet/COIN-Attack/blob/master/README.md
https://github.com/mustakcsecuet/COIN-Attack/blob/master/README.md

In the following, we describe the vulnerability report
header of each policy.
• Use-after-free:

– Memories that are used after free.
– Where are the memories allocated.
– Where are the memories freed.
– Where are the memories used after freed.

• Double free:
– Memories that are freed twice.
– Where are the memories allocated.
– Where are the memories freed at first.
– Where are the memories freed in the second time.

• Stack overflow:
– The function of the overwritten return address.

• Heap overflow:
– Memories that are written out of bound.
– Where is the heap memory overflowed.

• Heap memory leak:
– The name of OCALL that leaks the information.
– Where is the OCALL used.

• Stack memory leak:
– Where is the memcpy called.
– Memories that have been overread.
– Memories that hold the leak data.

• Ineffectual condition:
– The weak conditional statement.
– Where is the error code following the conditional state-
ment.

The report shows the vulnerability at the assembly code
level. We plan to integrate a debug plugin to translate that to
the source code location. The detail of vulnerability report-
ing is available at https://github.com/mustakcsecuet/COIN-
Attacks/blob/master/scripts/EXPERIMENT.md.

A.6 Experiment customization
The artifact assumes the target SGX project follows a stan-
dard directory structure (application code in App/ and en-
clave code in Enclave/). The bash scripts and the PoCs are
useful resources to guide the customization of an experiment.

A.7 Notes
There are a few known issues with the framework, mostly
due to the limitation in the dependencies:
• Instruction not recognized: QEMU does not support
some recently introduced instructions, such as endbr64
from Intel CET. Currently, we handle them by throwing
an exception.

• ISA too complex: Some instructions (e.g., AES-NI) are
too complex to support in the Triton symbolic engine, a
well-known limitation (https://github.com/JonathanSalwan/
Triton/issues/793). Our framework skips these instruc-
tions as well.

• Nested Calls: Our artifact does not include the fourth
model of COIN attacks. We plan to support it in future.
If you find other bugs in our project (on GitHub), please

raise an issue in the GitHub or email to the first author.

Session 11A: Enclaves and memory
security — Who will guard the guards?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

985

https://github.com/mustakcsecuet/COIN-Attacks/blob/master/scripts/EXPERIMENT.md
https://github.com/mustakcsecuet/COIN-Attacks/blob/master/scripts/EXPERIMENT.md
https://github.com/JonathanSalwan/Triton/issues/793
https://github.com/JonathanSalwan/Triton/issues/793

	Abstract
	1 Introduction
	2 Background
	2.1 SGX Programming Model

	3 COIN Attacks
	4 System Design
	4.1 API Parser
	4.2 Core Module
	4.3 Policy Module

	5 Evaluation
	5.1 Effectiveness
	5.2 Performance

	6 Related Work
	7 Summary
	8 Availability
	9 Acknowledge
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization
	A.7 Notes

